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Abstract: We review the current state-of-the-art of tunable microdisk/microtoroidal resonators 
with MEMS-actuated couplers. They are key enabling elements of many 
wavelength-division-multiplexing switches and tunable filters. The performance of dynamic 
add-drop and bandwidth-tunable filters will be discussed.  
 
 

Introduction  

Microring and microdisk resonators are compact building blocks for large scale photonic integrated 
circuits [1]. The functionalities of these circuits include wavelength-division-multiplexing (WDM) filters, 
switches, wavelength-selective switches and crossconnect [1], dynamic dispersion compensators [2], WDM 
lasers [3] and modulators [4]. For many of these functions, it is necessary to tune the properties of the 
microresonators. The most commonly used tuning mechanisms is thermal optic effect [5], in which the 
refractive index, and hence the resonance wavelength, of the resonator is varied by integrated heaters. 
Direct modulation of the refractive index has also been demonstrated using free-carrier plasma effect in Si 
[4] or electro-optic effect in III-V or lithium niobate [6]. Another tuning mechanism is to vary the loss or 
gain of the microresonators themselves. This changes the quality factor (Q) of the resonator and the critical 
coupling distance.  

  
Aside from the Q and the resonance wavelength, the most important parameters for microresonator 

circuits are their power coupling ratios. The characteristics of microresonators depend critically on the 
coupling ratios. In most integrated microresonators, the coupling ratios are fixed by the fabrication process 
and are not easily tunable. In 2003, we reported the first microresonator with integrated tunable couplers 
[7]. This is achieved by physically varying the spacing between the microdisks and the coupling 
waveguides using micro-electro-mechanical-system (MEMS) actuators. Later, with improved design and 
fabrication process, high performance tunable microdisk resonators with vertically coupled waveguides 
were reported [8, 9]. These resonators can be operated in uncoupled, under-coupled, critically coupled, or 
over-coupled regimes by simply varying the voltages on the MEMS actuators. Various functions have been 
demonstrated. Dynamic wavelength add-drop filters have been demonstrated, with a switching voltage of 
30V. The pass bandwidth of the filter is also tunable. We have achieved a tuning range of 3 to 78 GHz in a 
similar device with Si microtoroidal resonator [10]. In this paper, we will review the current state of the art 
of the MEMS tunable microresonators. Their applications in wavelength add-drop filters/multiplexers and 
bandwidth-tunable filters will be described.  

 
Basic Device Structures 

Figure 1 shows the schematic of the MEMS tunable microresonator. It consists of a microdisk or 
microtoroidal resonator and two vertically coupled waveguides. The waveguides are suspended on top of 
the microresonator. Using integrated electrostatic actuators, the waveguides can be selectively pulled down 
towards the microresonator. Since the coupling ratio is an exponential function of the gap spacing between 
the waveguide and the resonator, it can be tuned effectively over a wide range (many orders of magnitude) 
by simply moving the waveguide over a distance of 1 μm. Figure 2 shows the scanning electron 
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micrograph (SEM) of a tunable microdisk resonator with 20 μm radius. The two waveguides are 800 nm 
wide and 250 nm thick. The device is fabricated on two-layer silicon-on-insulators (SOI), with the 
microdisk patterned on the first layer, and the waveguides defined on the top Si layer. Detailed fabrication 
process can be found in [11]. After etching, the microdisks are annealed in hydrogen ambient to smoothen 
the sidewall roughness [12]. Typical Qs of the annealed microdisk are ~ 100,000 to 300,000. The single 
crystalline Si microtoroidal resonators are created by hydrogen annealing [13]. Compared with microdisks, 
the microtoroidal resonator has single radial mode and thus exhibits cleaner spectra without spurious 
high-order modes.   
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Fig. 1. Schematic of MEMS microtoroidal resonator 
with integrated tunable couplers. 

Fig. 2. SEM of MEMS tunable microdisk 
resonator. The waveguides on top of the 
microdisk are suspended by sacrificial etching.  

 

Dynamic Wavelength Add-Drop Multiplexers  

The schematic illustrating the principle of the dynamic add-drop filter is shown in Fig. 3. When the 
waveguides are far away, the microresonator is essentially uncoupled. All input power travels directly to 
the Through port. With decreasing distance between the waveguides and the resonator, the resonant 
wavelength is increasingly switched to the Drop port. The distance can be controlled precisely by the 
electrostatic actuator. The experimental results are shown in Fig. 4. At 0V, the waveguide-disk spacing is 1 
μm and the microdisk is uncoupled. At 30V, the disk is over-coupled, and the resonant wavelengths are 
effectively switched to the Drop port.  
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Fig. 3. Schematic illustrating the principle of MEMS 
dynamic add-drop filter. 

Fig. 4. Measured spectra of the Through (top) and 
Drop (bottom) ports with the MEMS actuators 
biased at 0V (left) and 30V (right), respectively.  
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Bandwidth-Tunable Filters  

In the over-coupled regime, the overall Q of the 
resonator is dominated by coupling. Therefore, 
varying coupling can directly tune the loaded Q and 
hence the pass bandwidth of the Drop port. Using 
microtoroidal resonators [10], we have demonstrated a 
record wide bandwidth tuning range of 3 to 78 GHz, 
as shown in Fig. 5.   

 
Conclusion  

We have described a class of novel optical 
microresonators with integrated tunable couplers. This 
is achieved by integrating MEMS actuators with 
suspended optical waveguides. Using vertically 
coupled MEMS microdisk resonators, dynamic 
add-drop multiplexers have been demonstrated. 
Bandwidth-tunable filters with record tuning range (3 
to 78 GHz) have also been attained.  
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Fig. 5. The spectra of a bandwidth-tunable filter 
under various bias voltages. The FWHM 
bandwidth is continuous tunable from 3 to 78 
GHz.   
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